
An efficient synchronous-updating memristor-based
Ising solver for combinatorial optimization

Mingrui Jiang1, Keyi Shan1, Xia Sheng2, Cat Graves2, John Paul Strachan3, Can Li1

1Department of EEE, The University of Hong Kong, Hong Kong SAR, China; 2Hewlett Packard Labs, Milpitas, CA, United
States; 3Peter Grünberg Institut (PGI-14) and RWTH Aachen University, Germany; Email: canl@hku.hk

Abstract—Despite showing significant potential in solving
combinatorial optimization problems, existing memristor-
based solvers update node states asynchronously by
performing matrix multiplication column-by-column, leaving
the massive parallelism of the crossbar not fully exploited. In
this work, we propose and experimentally demonstrate solving
the optimization problems with a synchronous-updating
memristor-based Ising solver, which is realized by a binary
neural network-inspired updating algorithm and a physics-
inspired annealing method. The newly proposed method saves
more than 5× time and 35× energy consumption compared to
the state-of-the-art mem-HNN for finding the optimal solution
to a 60-node Max-cut problem.

I. INTRODUCTION
Combinatorial optimization problems (COPs) aim at

minimizing a cost or energy function over a set of high-
dimensional variables, which find great importance in a large
variety of industrial applications such as supply chain
management, flight scheduling, circuit layout design, etc. Such
problems are highly time-consuming for an exact solution with
conventional hardware, as most fall into non-deterministic
polynomial-time (NP)-hard problems. On the other hand, such
problems can be solved efficiently with heuristic approaches
by mapping them to Ising models implemented on various
platforms, including superconductor q-bits [1], coherent light
[2, 3], CMOS oscillators [4], and nano-oscillators [5].

 In addition to physics-inspired Ising machines, a
neuromorphic algorithm called Hopfield neural network
(HNN) implemented on memristor crossbar arrays has shown
great potential both in the time and energy consumption
towards solutions compared to Ising machines. One challenge
for this method is that the system can get stuck in local minima.
So, to get the global minima (the best solution), many
techniques have been explored, including using stochastic
neurons for implementing simulated annealing (SA) [6-8],
using Mott memristors as chaos sources [9], changing self-
feedbacks for chaotic simulated annealing (CSA) [8, 10], or
harnessing intrinsic noises by hysteretic thresholds [11].
However, to the best of our knowledge, all these
demonstrations update only one node at each iteration (i.e.,
asynchronous), by performing the matrix multiplication via
one or several crossbar columns at once (see Fig. 1). This is
because of the restrictions of the discrete-time HNN (DHNN).
Therefore, they did not fully utilize the parallelism of the
memristor crossbar array.

To enable the synchronous updating and unleash the
massive parallelism of the memristor crossbar array (Fig. 2),

we learn from the training process of a binary neural network
and for the first time, apply it in a memristor-based Ising
solver. Besides, a physics-inspired annealing method is applied
to get rid of local minima. The software-hardware co-
optimized memristor-based Ising solver (MIS) is
experimentally implemented in an integrated memristor
crossbars platform, demonstrating more than 5× speed-up and
35× energy-saving in solving middle-size COPs and more
speed-up and energy-saving for larger-sized COPs.

II. PARALLEL UPDATING ALGORITHM
The Ising machines aim to find a spin configuration that

gives a minimum Ising Hamiltonian, which is similar to the
process that finds a lower-cost function in the training of a
neural network. The Ising Hamiltonian is defined as

𝐻Ising = − ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗
𝑖<𝑗

= − 1
2

𝝈𝑻 𝑱𝝈,

where 𝝈 = {𝜎1, 𝜎2, … , 𝜎𝑖, … , 𝜎𝑁 } encodes the spin
configuration with each component 𝜎𝑖 ∈ {−1, +1} . 𝑱 is a
𝑁 ×𝑁 symmetric spin coupling matrix which is defined by the
combinatorial optimization problem and can be represented in
crossbars. The final 𝝈 configuration that leads to the minimum
Ising Hamiltonian is the solution to the problem.

The Hamiltonian can be minimized following a gradient
descent rule, but the challenge is that the spin values must be
either +1 or -1. The solution is to assign a real number 𝑥! to
represent the intermediate spin values, update it based on the
accumulated gradient after each iteration with constrain rules,
and then convert that into the binarized spin values 𝜎! after the
iterations. The most computation expensive step during the
operation, the calculation of the gradient, can be performed
efficiently in the memristor crossbar, following equation:

∇𝐻Ising = −𝑱𝝈 = −𝑱sign(𝒙) (1)
The process finds similarities with the training of a BNN,

where real numbered weights are being updated based on the
accumulated gradient with some constraining rules, and
binarized afterward [12]. Accordingly, techniques to improve
the gradient descent can also be applied to our method. In this
work, we apply momentum with a value of 0.99, to speed up
the convergence and lower the energy consumption. The
algorithm is described in more detail in Fig. 3.

Another challenge is that the gradient descent-based
algorithm can cause the system to be trapped in local minima,
preventing the optimal solution. Inspired by quantum adiabatic
annealing [1], we propose a new annealing method that is
designed for memristor Ising solver, which follows the
principle of gradual non-convexity (Fig. 4). The system

22.2.1978-1-6654-8959-1/22/$31.00 ©2022 IEEE
531

20
22

 IE
EE

 In
te

rn
at

io
na

l E
le

ct
ro

n
D

ev
ic

es
 M

ee
tin

g
(I

ED
M

) |
 9

78
-1

-6
65

4-
89

59
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IE
D

M
45

62
5.

20
22

.1
00

19
34

8

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on April 30,2023 at 08:45:28 UTC from IEEE Xplore. Restrictions apply.

Hamiltonian is defined as 𝐻system(𝑡) = 𝜆(𝑡)𝐻initial + 𝐻Ising ,
where 𝐻initial is the initial Hamiltonian with easy access to its
ground state. In this work, we use 𝐻initial = 1

2 ∑ 𝑥𝑖
2

𝑖 , whose
ground state is located when all spin values 𝑥𝑖 = 0. 𝜆(𝑡) is a
time-dependent coefficient, which starts with a sufficiently
large value so that the 𝐻initial dominates and the ground state
can be easily found. Then, 𝜆(𝑡) will gradually decrease to zero
and lead the system to the ground state of 𝐻Ising.

III. INTEGRATED MEMRISTOR-BASED SOLVER FOR
MAX-CUT PROBLEMS

The proposed algorithm is experimentally implemented in
our integrated memristor crossbar system. Fig. 5 shows the
experimental setup of the memristor Ising solver. The selection
transistors in the 64x64 1T1R array and the peripheral circuits
(amplifiers, sample and hold, ADC, etc.) are tape-out at
TSMC’s 180 nm technology node. 50 nm×50 nm Ta/TaOx/Pt
memristor devices are integrated with our in-house back-end
process. Our memristor device can stably maintain multilevel
states (16 states shown in Fig. 6). An off-chip measurement
circuit is developed in a printed circuit board (PCB) to
communicate with the memristor chip via a microcontroller. In
this work, spin couplings are stored in the memristor crossbar
for computing gradient in the analog domain, while spin
updates are performed in the digital domain.

To evaluate the performance of our proposed method, we
choose a typical NP-hard problem, “Max-cut”. The problem
aims to divide all vertices (nodes) in a graph 𝐺(𝑉 , 𝐸) into two
subsets that can cut the most edges connecting vertices. The
graph of a 64-node Max-cut problem with edge density of 0.5
(defined as 2𝐸/(𝑉 (𝑉 − 1))) is shown in Fig. 7. The
connection matrix of the problem is then converted to
conductance matrix and programmed into our memristor
crossbar. Fig. 8 and Fig. 9 show the experimental readout
conductance matrix and the corresponding conductance
distribution, respectively, which shows that the problem can be
programmed accurately. Then, the gradient can be computed
in a physical crossbar with Eq. 1. Fig. 10 shows the computing
error distribution with random inputs. One sees that the
gradients can be calculated precisely in the analog domain.

IV. BENCHMARKS
Once the problem is programmed into the memristor array,

the Max-cut problem can be solved iteratively with the above
algorithm without the need to re-program the array. Fig. 11
shows the experimental energy evolving process of our method
(MIS) as compared to the naïve discrete-time HNN (DHNN)
[13] and the DHNN with simulated annealing (SA) [7, 8, 11].
One sees that the success probabilities of reaching the optimal
solution (energy of -188) with our MIS, SA, and DHNN are
0.88, 0.10, and 0.01, respectively. The final solutions for this
experiment are shown in Fig. 12. The success probability and
the average final energy during iterations are compared in Fig.
13, which clearly demonstrates that our method can find better
solutions than others. The successful and efficient convergence
is based on a fine-tuned step size (Fig. 14), which is similar to
the choice of learning rate during the training of a BNN.

Those results (Fig. 13 & Fig. 14) also show a high
agreement between the experiments and the simulations based
on our experimentally validated crossbar model [14], which
provides a powerful tool to forecast the performance of our
method in scaled problems. Fig. 15a, Fig. 15b show success
probability against problem sizes with different numbers of
iterations, by implementing our method and SA respectively.
Time-to-solution (TTS, defined as the time needed to reach the
99% success probability) of our method is 74× faster than SA
when the problem size N=100 and the ratio further grows with
larger problems (Fig. 16). Naïve DHNN is not compared here
because the local-searching algorithm has a tiny chance of
success. For problems with various densities, our method shows
great overall performance due to its all-to-all connection
property (Fig. 17).

Another benefit of deploying this method in the crossbar is
that the conductance variation of memristor devices can be used
as a perfect noise source so that the system will not get stuck in
the ground state of 𝐻initial. Fig. 18 shows that the intrinsic noise
from the memristor crossbar is large enough to head-start the
convergence but not too large to degrade the performance.

Finally, the area and energy consumption is estimated with
consideration of a peripheral circuit design at a 16 nm
technology node (detailed breakdown shown in Fig. 19). The
results show that our system offers at least 5× improvement in
the time-to-solution and 35× in energy efficiency compared to
the recent reported best-performed solver (Fig. 20) primarily
due to its better parallelism. Those numbers are based on the
60-node Max-cut problems and can be further improved for
larger problems.

V. CONCLUSION
To sum up, we developed a synchronous-updating

algorithm with a physics-inspired annealing method to solve the
combinatorial optimization problems in memristor crossbars.
This method is different from previously reported memristor-
based approaches in the way that all nodes can be updated in
parallel to make full use of the memristor’s parallelism. The
idea is experimentally validated in our integrated memristor
platform, and our analysis shows the proposed memristor-based
Ising solver can improve both the speed, energy, and final
accuracy by joint benefits from the new algorithm and hardware.

ACKNOWLEDGMENT

This work was supported in part by the Early Career Scheme from the
Research Grant Council of Hong Kong SAR under Grant 27210321; in part by
the NSFC Excellent Young Scientist Fund (Hong Kong and Macau) under
Grant 62122005; in part by the Mainland-Hong Kong Joint Funding Scheme
(MHKJFS) under Project MHP/066/20; and in part by the ACCESS—AI Chip
Center for Emerging Smart Systems, sponsored by InnoHK funding, Hong
Kong SAR.

REFERENCES
[1]. S. Boixo, et al. Nat. Phys. (2014) [2]. T. Inagaki, et al. Science (2016) [3].
P.L. Mcmahon, et al. Science (2016) [4]. W. Moy, et al. Nat. Electron. (2022)
[5]. S. Dutta, et al. Nat. Electron. (2021) [6]. J. H. Shin, et al. IEDM (2018)
[7]. M. C. Hong, et al. IEDM (2021) [8]. M.R. Mahmoodi, et al. Nat. Commun.
(2019) [9]. S. Kumar, et al. Nature (2020) [10]. K. Yang, et al. Sci. Adv. (2020)
[11]. F. Cai, et al. Nat. Electron. (2020) [12]. M. Courbariaux, et al. NeurIPS
(2015) [13]. J.J. Hopfield Proc. Natl. Acad. Sci. U.S.A. (1984) [14]. R. Mao,
et al. IEEE Trans. Circuits Syst. II Express Briefs (2022) [15]. J. Liu, et al.
ISSCC (2022).

R. Mao, et al. IEEE Trans. Circuits Syst. II Express Briefs (2022)

22.2.2
532Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on April 30,2023 at 08:45:28 UTC from IEEE Xplore. Restrictions apply.

Prior Works: Asynchronous Updating

u1

u2

un

i1 i2 in

randomly
selected

Process

Choose one to
update at each

iteration

Candidate Solution

+1

+1

-1

This Work: Synchronous Updating

Fig. 1: The diagram of the working principle for
existing asynchronous updating mem-HNN solver,
which updates one or several nodes at each iteration.

Fig. 2: The diagram of proposed synchronous
updating memristor-based Ising solver, which updates
all nodes at each iteration.

u1

u2

un

Process in parallel

+1

+1

-1

i1 i2 in

Candidate Solution

The gradient vector is
calculated in crossbar in

the analog domain:
g = -Jsign(x)

Calculate momentum:
m(k+1) = β*m(k) - η*g

and clip m to be between -1 and 1

Update intermediate spin values x:
x(k+1) = x(k) + m(k+1)

and clip x to be between -1 and 1

Fig. 3: The diagram of the the synchronous
updating algorithm.

En
er

gy

State space

A
nnealing direction

Ground state

Fig. 4: The working principle of proposed
gradually non-convexity annealing that inspired
from quantum adiabatic annealing.

Fig. 5: (a) The integrated memristor-based Ising solver runing combinatorial optimization problems. The computer
talks to the memristor chip through a microcontroller on a PCB board. (c) The photo of a 64×64 1T1R array, which
is the core of the memristor-based Ising solver. (c) The cross-sectional photo of the Ta/TaOx/Pt memrsitor device.

10 nm

Pt

Pt

Ta

TaOx

(a) (b) (c)

Fig. 6: State stability of expeimentally programmed 16
conductance states. The solid lines show the mean over
256 devices that are programmed to the same target
conductance and the shaded area indicates the interquar-
tile range.

Fig. 7: The graph of the
dense Max-cut problem
to solve.

Fig. 11: The experimental energy evolving process with the proposed
memristor-based Ising solver (MIS) in this work, discrete-time Hopfiled
neural network (DHNN) and DHNN with simulated annealing (SA). The
light color represents 100 different trials and dark color represents the
mean. Step size is 0.01 in this experiment and λ changes linearly from 10
to 0 for MIS.

Fig. 12: The histogram of the final energy
(the solution of the system) with
proposed memristor-based Ising solver
(MIS) in this work, discrete-time
Hopfiled neural network (DHNN) and
DHNN with simulated annealing (SA).

Fig. 8: The readout conductance matrix after experimen-
tally programming the Max-cut problem into the
integrated crossbar. 0s representing no connection are
mapped to low conductance state (target 0 µs). 1s
representing connections are mapped to high conduct-
ance state near 150 µs.

Fig. 9: The histogram
of the conductance
distribution.

Fig. 10: Nomalized error distribution
by applying 1000 random input. The
standard deviation is 0.28 while the
range of the output is -64 ~ 64.

Binarize x to calculate gradient
and indicate the solution

22.2.3
533Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on April 30,2023 at 08:45:28 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Experimental noise level

Fig. 13: (a) The success probability and (b) average final energy during iterations used per run.
The blue dash line is the simulation with our experimentally validated model while the solid line
is the experimental result from the physical array.

Fig. 14: The success probability and average final energy changes
with the step size during the update. In a certain range, system
performance improves with the increased step sizes. However, when
the step size is larger than a certain value, the system fails to
converge.

Fig. 15: Success probability of (a) MIS and (b) SA against different problem sizes. For each problem
szie, 20 random generated instances are used. For each instance, 1000 trials are peformed to calculate
success probability. The shaded area shows interquartile range. The square marker indicates the median.

(a) (b)

(a) (b)

Fig. 16: Time to solution (TTS) of (a) MIS and (b) SA against different problem sizes. TTS is calculated
as Tsingle-run×[log(1-0.99)/log(1-P)]. Both methods are assumed to be implemented on memristor crossbars
with a working frequency of 500Mhz. A fit curve of is plotted to show the scaling property.

Fig. 17: Success probability vs problem density after the
1000th iteration.

Fig. 18: Success probability vs noise levels. The dash line
shows the experimental noise level.

Fig. 19: The area and energy consumption
estimation breakdown of peripheral circuits
assuming they are designed at a 16nm technology
node. A state-of-the-art 8-bit ADC in [15] is used
for estimation.

Fig. 20: Benchmark comparison between different Ising machines and solvers in solving dense 60-node Max-cut problems.

Module Array Drivers S&H MUX ADC Sum

Area (μm)2 56.2 176.39 2.02 65.15 2850*4 10,619.76
Latency (ns) <0.3 0.1 - 0.008 - -

Energy (pJ) 0.63 0.22 0.01 0.13 1.59 2.58

This work mem-HNN [11] PTNO [5] CIM [2] D-wave 2000Q [1] GPU [11] CPU [11]

Representation of
spins

Digital bits - Oscillator phases Coherent light
Superconducting

qubits
Digital bits Digital bits

Interactions
Conductance in memristor

crossbar array
-

Capacitance/
resistance

FPGA Flux storage
Coupling matrix
stored in digital

memory

Coupling matrix
stored in digital

memory
Connectivity All-to-all All-to-all All-to-all All-to-all Sparse All-to-all All-to-all

Update mechanism Synchronous
Hybrid (10-nodes per

time step)
Synchronous Asynchronous Synchronous Synchronous Asynchronous

Annealing Scheme
Gradual non-convexity
 annealing

Modulating intrinsic
noises by hysteretic

threshold

Second-harmonic
injection lock

Coherent computing Quantum annealing
Noisy mean-field

annealing
Parallel tempering

Annealing time 400 ns 600 ns - 150 μs 1ms 12.3 μs 223.6 μs

Time to Solution 1.6 μs 6.6 μs 30 us (N=100) 600 μs 104 s (N=55) 10 μs 223.6 μs

Power 1.29 mW 10.9 mW 2.56 mW - 25 kW <250 W 20 W

Energy to Solution 2.06 nJ 72 nJ 76.8 nJ - 250 MJ <2.5 mJ 4 mJ

Solutions per second
per watt 4.85×108 1.38×107 1.3×107 - 4×10-9 >400 250

74×

22.2.4
534Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on April 30,2023 at 08:45:28 UTC from IEEE Xplore. Restrictions apply.

