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Abstract—Despite showing significant potential in solving 
combinatorial optimization problems, existing memristor-
based solvers update node states asynchronously by 
performing matrix multiplication column-by-column, leaving 
the massive parallelism of the crossbar not fully exploited. In 
this work, we propose and experimentally demonstrate solving 
the optimization problems with a synchronous-updating 
memristor-based Ising solver, which is realized by a binary 
neural network-inspired updating algorithm and a physics-
inspired annealing method. The newly proposed method saves 
more than 5× time and 35× energy consumption compared to 
the state-of-the-art mem-HNN for finding the optimal solution 
to a 60-node Max-cut problem.  

I. INTRODUCTION 
Combinatorial optimization problems (COPs) aim at 

minimizing a cost or energy function over a set of high-
dimensional variables, which find great importance in a large 
variety of industrial applications such as supply chain 
management, flight scheduling, circuit layout design, etc. Such 
problems are highly time-consuming for an exact solution with 
conventional hardware, as most fall into non-deterministic 
polynomial-time (NP)-hard problems. On the other hand,  such 
problems can be solved efficiently with heuristic approaches 
by mapping them to Ising models implemented on various 
platforms, including superconductor q-bits [1], coherent light 
[2, 3], CMOS oscillators [4], and nano-oscillators [5]. 

 In addition to physics-inspired Ising machines, a 
neuromorphic algorithm called Hopfield neural network 
(HNN) implemented on memristor crossbar arrays has shown 
great potential both in the time and energy consumption 
towards solutions compared to Ising machines. One challenge 
for this method is that the system can get stuck in local minima. 
So, to get the global minima (the best solution), many 
techniques have been explored, including using stochastic 
neurons for implementing simulated annealing (SA) [6-8], 
using Mott memristors as chaos sources [9], changing self-
feedbacks for chaotic simulated annealing (CSA) [8, 10], or 
harnessing intrinsic noises by hysteretic thresholds [11]. 
However, to the best of our knowledge, all these 
demonstrations update only one node at each iteration (i.e., 
asynchronous), by performing the matrix multiplication via 
one or several crossbar columns at once (see Fig. 1). This is 
because of the restrictions of the discrete-time HNN (DHNN). 
Therefore, they did not fully utilize the parallelism of the 
memristor crossbar array. 

To enable the synchronous updating and unleash the 
massive parallelism of the memristor crossbar array (Fig. 2), 

we learn from the training process of a binary neural network 
and for the first time, apply it in a memristor-based Ising 
solver. Besides, a physics-inspired annealing method is applied 
to get rid of local minima. The software-hardware co-
optimized memristor-based Ising solver (MIS) is 
experimentally implemented in an integrated memristor 
crossbars platform, demonstrating more than 5× speed-up and 
35× energy-saving in solving middle-size COPs and more 
speed-up and energy-saving for larger-sized COPs. 

II. PARALLEL UPDATING ALGORITHM 
The Ising machines aim to find a spin configuration that 

gives a minimum Ising Hamiltonian, which is similar to the 
process that finds a lower-cost function in the training of a 
neural network. The Ising Hamiltonian is defined as  

𝐻Ising = − ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗
𝑖<𝑗

= − 1
2

𝝈𝑻 𝑱𝝈, 

where 𝝈 = {𝜎1, 𝜎2, … , 𝜎𝑖, … , 𝜎𝑁 } encodes the spin 
configuration with each component 𝜎𝑖 ∈ {−1, +1} . 𝑱  is a 
𝑁 ×𝑁 symmetric spin coupling matrix which is defined by the 
combinatorial optimization problem and can be represented in 
crossbars. The final 𝝈 configuration that leads to the minimum 
Ising Hamiltonian is the solution to the problem.  

The Hamiltonian can be minimized following a gradient 
descent rule, but the challenge is that the spin values must be 
either +1 or -1. The solution is to assign a real number 𝑥! to 
represent the intermediate spin values, update it based on the 
accumulated gradient after each iteration with constrain rules, 
and then convert that into the binarized spin values 𝜎! after the 
iterations. The most computation expensive step during the 
operation, the calculation of the gradient, can be performed 
efficiently in the memristor crossbar, following equation:  

∇𝐻Ising = −𝑱𝝈 = −𝑱sign(𝒙) (1) 
The process finds similarities with the training of a BNN, 

where real numbered weights are being updated based on the 
accumulated gradient with some constraining rules, and 
binarized afterward [12]. Accordingly, techniques to improve 
the gradient descent can also be applied to our method. In this 
work, we apply momentum with a value of 0.99, to speed up 
the convergence and lower the energy consumption. The 
algorithm is described in more detail in Fig. 3. 

Another challenge is that the gradient descent-based 
algorithm can cause the system to be trapped in local minima, 
preventing the optimal solution. Inspired by quantum adiabatic 
annealing [1], we propose a new annealing method that is 
designed for memristor Ising solver, which follows the 
principle of gradual non-convexity (Fig. 4). The system 
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Hamiltonian is defined as 𝐻system(𝑡) = 𝜆(𝑡)𝐻initial + 𝐻Ising , 
where 𝐻initial is the initial Hamiltonian with easy access to its 
ground state. In this work, we use 𝐻initial = 1

2 ∑ 𝑥𝑖
2

𝑖 , whose 
ground state is located when all spin values 𝑥𝑖 = 0. 𝜆(𝑡) is a 
time-dependent coefficient, which starts with a sufficiently 
large value so that the 𝐻initial dominates and the ground state 
can be easily found. Then, 𝜆(𝑡) will gradually decrease to zero 
and lead the system to the ground state of 𝐻Ising. 

III. INTEGRATED MEMRISTOR-BASED SOLVER FOR 
MAX-CUT PROBLEMS 

The proposed algorithm is experimentally implemented in 
our integrated memristor crossbar system. Fig. 5 shows the 
experimental setup of the memristor Ising solver. The selection 
transistors in the 64x64 1T1R array and the peripheral circuits 
(amplifiers, sample and hold, ADC, etc.) are tape-out at 
TSMC’s 180 nm technology node. 50 nm×50 nm Ta/TaOx/Pt 
memristor devices are integrated with our in-house back-end 
process. Our memristor device can stably maintain multilevel 
states (16 states shown in Fig. 6). An off-chip measurement 
circuit is developed in a printed circuit board (PCB) to 
communicate with the memristor chip via a microcontroller. In 
this work, spin couplings are stored in the memristor crossbar 
for computing gradient in the analog domain, while spin 
updates are performed in the digital domain. 

To evaluate the performance of our proposed method, we 
choose a typical NP-hard problem, “Max-cut”. The problem 
aims to divide all vertices (nodes) in a graph 𝐺(𝑉 , 𝐸) into two 
subsets that can cut the most edges connecting vertices. The 
graph of a 64-node Max-cut problem with edge density of 0.5 
(defined as 2𝐸/(𝑉 (𝑉 − 1)) ) is shown in Fig. 7. The 
connection matrix of the problem is then converted to 
conductance matrix and programmed into our memristor 
crossbar. Fig. 8 and Fig. 9 show the experimental readout 
conductance matrix and the corresponding conductance 
distribution, respectively, which shows that the problem can be 
programmed accurately. Then, the gradient can be computed 
in a physical crossbar with Eq. 1.  Fig. 10 shows the computing 
error distribution with random inputs. One sees that the 
gradients can be calculated precisely in the analog domain.   

IV. BENCHMARKS 
Once the problem is programmed into the memristor array, 

the Max-cut problem can be solved iteratively with the above 
algorithm without the need to re-program the array. Fig. 11 
shows the experimental energy evolving process of our method 
(MIS) as compared to the naïve discrete-time HNN (DHNN) 
[13] and the DHNN with simulated annealing (SA) [7, 8, 11]. 
One sees that the success probabilities of reaching the optimal 
solution (energy of -188) with our MIS, SA, and DHNN are 
0.88, 0.10, and 0.01, respectively. The final solutions for this 
experiment are shown in Fig. 12. The success probability and 
the average final energy during iterations are compared in Fig. 
13, which clearly demonstrates that our method can find better 
solutions than others. The successful and efficient convergence 
is based on a fine-tuned step size (Fig. 14), which is similar to 
the choice of learning rate during the training of a BNN. 

Those results (Fig. 13 & Fig. 14) also show a high 
agreement between the experiments and the simulations based 
on our experimentally validated crossbar model [14], which 
provides a powerful tool to forecast the performance of our 
method in scaled problems. Fig. 15a, Fig. 15b show success 
probability against problem sizes with different numbers of 
iterations, by implementing our method and SA respectively. 
Time-to-solution (TTS, defined as the time needed to reach the 
99% success probability) of our method is 74× faster than SA 
when the problem size N=100 and the ratio further grows with 
larger problems (Fig. 16). Naïve DHNN is not compared here 
because the local-searching algorithm has a tiny chance of 
success. For problems with various densities, our method shows 
great overall performance due to its all-to-all connection 
property (Fig. 17).  

Another benefit of deploying this method in the crossbar is 
that the conductance variation of memristor devices can be used 
as a perfect noise source so that the system will not get stuck in 
the ground state of 𝐻initial. Fig. 18 shows that the intrinsic noise 
from the memristor crossbar is large enough to head-start the 
convergence but not too large to degrade the performance.  

Finally, the area and energy consumption is estimated with 
consideration of a peripheral circuit design at a 16 nm 
technology node (detailed breakdown shown in Fig. 19). The 
results show that our system offers at least 5× improvement in 
the time-to-solution and 35× in energy efficiency compared to 
the recent reported best-performed solver (Fig. 20) primarily 
due to its better parallelism. Those numbers are based on the 
60-node Max-cut problems and can be further improved for 
larger problems. 

V. CONCLUSION 
To sum up, we developed a synchronous-updating 

algorithm with a physics-inspired annealing method to solve the 
combinatorial optimization problems in memristor crossbars. 
This method is different from previously reported memristor-
based approaches in the way that all nodes can be updated in 
parallel to make full use of the memristor’s parallelism. The 
idea is experimentally validated in our integrated memristor 
platform, and our analysis shows the proposed memristor-based 
Ising solver can improve both the speed, energy, and final 
accuracy by joint benefits from the new algorithm and hardware.  
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Prior Works: Asynchronous Updating
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This Work: Synchronous Updating

Fig. 1: The diagram of the working principle for 
existing asynchronous updating mem-HNN solver, 
which updates one or several nodes at each iteration.

Fig. 2: The diagram of proposed synchronous 
updating memristor-based Ising solver, which updates 
all nodes at each iteration.

u1

u2

un

Process in parallel

+1

+1
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i1 i2 in

Candidate Solution

The gradient vector is 
calculated in crossbar in 

the analog domain:
g = -Jsign(x)

Calculate momentum:
m(k+1) = β*m(k) - η*g

and clip m to be between -1 and 1

Update intermediate spin values x:
x(k+1) = x(k) + m(k+1)

and clip x to be between -1 and 1 

Fig. 3: The diagram of the the synchronous 
updating algorithm.
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Fig. 4: The working principle of proposed 
gradually non-convexity annealing that inspired 
from quantum adiabatic annealing.

Fig. 5: (a) The integrated memristor-based Ising solver runing combinatorial optimization problems. The computer 
talks to the memristor chip through a microcontroller on a PCB board. (c) The photo of  a 64×64 1T1R array, which 
is the core of the memristor-based Ising solver. (c) The cross-sectional photo of the Ta/TaOx/Pt memrsitor device.

10 nm

Pt

Pt

Ta

TaOx

(a) (b) (c)

Fig. 6:  State stability of expeimentally programmed 16 
conductance states. The solid lines show the mean over 
256 devices that are programmed to the same target 
conductance and the shaded area indicates the interquar-
tile range.

Fig. 7: The graph of the 
dense Max-cut problem 
to solve. 

Fig. 11: The experimental energy evolving process with the proposed 
memristor-based Ising solver (MIS) in this work, discrete-time Hopfiled 
neural network (DHNN) and DHNN with simulated annealing (SA). The 
light color represents 100 different trials and dark color represents the 
mean. Step size is 0.01 in this experiment and λ changes linearly from 10 
to 0 for MIS.

Fig. 12: The histogram of the final energy 
(the solution of the system) with  
proposed memristor-based Ising solver 
(MIS) in this work, discrete-time 
Hopfiled neural network (DHNN) and 
DHNN with simulated annealing (SA).

Fig. 8: The readout conductance matrix after experimen-
tally programming the Max-cut problem into the 
integrated crossbar. 0s representing no connection are 
mapped to low conductance state (target 0 µs). 1s 
representing connections are mapped to high conduct-
ance state near 150 µs. 

Fig. 9:  The histogram 
of the conductance 
distribution.

Fig. 10: Nomalized error distribution 
by applying 1000 random input. The 
standard deviation is 0.28 while the 
range of the output is -64 ~ 64.

Binarize x to calculate gradient 
and indicate the solution
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(a) (b)

Experimental noise level

Fig. 13: (a) The success probability and (b) average final energy during iterations used per run. 
The blue dash line is the simulation with our experimentally validated model while the solid line 
is the experimental result from the physical array.

Fig. 14: The success probability and average final energy changes 
with the step size during the update. In a certain range, system 
performance improves with the increased step sizes. However, when 
the step size is larger than a certain value, the system fails to 
converge.

Fig. 15: Success probability of (a) MIS and (b) SA against different problem sizes. For each problem 
szie, 20 random generated instances are used. For each instance, 1000 trials are peformed to calculate 
success probability. The shaded area shows interquartile range. The square marker indicates the median.

(a) (b)

(a) (b)

Fig. 16: Time to solution (TTS) of (a) MIS and (b) SA against different problem sizes. TTS is calculated 
as Tsingle-run×[log(1-0.99)/log(1-P)]. Both methods are assumed to be implemented on memristor crossbars 
with a working frequency of 500Mhz. A fit curve of                            is plotted to show the scaling property.

Fig. 17: Success probability vs problem density after the 
1000th iteration.

Fig. 18: Success probability vs noise levels. The dash line 
shows the experimental noise level. 

Fig. 19: The area and energy consumption 
estimation breakdown of peripheral circuits 
assuming they are designed at a 16nm technology 
node. A state-of-the-art 8-bit ADC in [15] is used 
for estimation.

Fig. 20: Benchmark comparison between different Ising machines and solvers in solving dense 60-node Max-cut problems. 

Module Array Drivers S&H MUX ADC Sum

Area (μm)2 56.2 176.39 2.02 65.15 2850*4 10,619.76
Latency (ns) <0.3 0.1 - 0.008 - -

Energy (pJ) 0.63 0.22 0.01 0.13 1.59 2.58

This work mem-HNN [11] PTNO [5] CIM [2] D-wave 2000Q [1] GPU [11] CPU [11]

Representation of
spins

Digital bits - Oscillator phases Coherent light
Superconducting

qubits
Digital bits Digital bits

Interactions
Conductance in memristor

crossbar array
-

Capacitance/
resistance

FPGA Flux storage
Coupling matrix
stored in digital

memory

Coupling matrix
stored in digital

memory
Connectivity All-to-all All-to-all All-to-all All-to-all Sparse All-to-all All-to-all

Update mechanism Synchronous
Hybrid (10-nodes per

time step)
Synchronous Asynchronous Synchronous Synchronous Asynchronous

Annealing Scheme
Gradual non-convexity 
         annealing

Modulating intrinsic
noises by hysteretic

threshold

Second-harmonic
injection lock

Coherent computing Quantum annealing
Noisy mean-field

annealing
Parallel tempering

Annealing time 400 ns 600 ns - 150 μs 1ms 12.3 μs 223.6 μs

Time to Solution 1.6 μs 6.6 μs 30 us (N=100) 600 μs 104 s (N=55) 10 μs 223.6 μs

Power 1.29 mW 10.9 mW 2.56 mW - 25 kW <250 W 20 W

Energy to Solution 2.06 nJ 72 nJ 76.8 nJ - 250 MJ <2.5 mJ 4 mJ

Solutions per second
per watt 4.85×108 1.38×107 1.3×107 - 4×10-9 >400 250

74×
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