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Abstract—While memristive crossbars have been reported
to offer substantial performance efficiency benefits orders of
magnitude above digital processors, there remain high risks in
analog computing platforms using emerging non-volatile memory
technologies, primarily due to device performance, variability,
yield, and interactions with peripheral circuits. We directly
integrated CMOS and nanoscale (down to 25 nm) memristors for
fully on-chip reading/programming/computing demonstrations.
We operate in a low power regime, program with fine control,
showing high yield and low variability across our memristive
arrays. With the integrated chip, we successfully demonstrated
a multi-layer convolutional neural network with MNIST classifi-
cation accuracy of above 95.3%, demonstrating several concepts
in proposed architectures for hybrid analog-digital computing.
The ability to tackle NP-hard optimization problems is also
experimentally demonstrated with this platform. This work de-
risks many of the chief concerns for an accelerator based on
analog rather than purely digital computing circuits, as well as
validating the core elements of a future in-memory computing
architecture.

Index Terms—memristor, non-volatile memory, in-memory
computing, analog computing, neural networks

I. INTRODUCTION

Computational workloads in the exciting areas of Artifi-

cial Intelligence (AI) and Big Data Analytics are growing

faster than Moore’s law, particularly with the sizes of the

neural networks (NN), and the number of operations needed

to train them. Current digital hardware is not well-suited

to these workloads due to their data intensive nature and

the von Neumann bottle-neck in the architecture. New and

emerging architectures, such as Google TPU’s systolic array,

do not fully address these challenges, utilizing distributed

and near-memory approaches. A fully in-memory computing

approach, while more promising, requires a method to co-

locate computing and data-storage. This is achievable with

memristor/ReRAM crossbar arrays, which allow for non-

volatile storage of NN weights with tunable resistances and
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parallel analog computation using Ohm’s and Kirchhoff’s

laws.

Recent studies have shown promising results to accelerate

various computing tasks [1]–[6]. Our first prototype chip

used large 2 µm memristors and off-chip driving and sensing

circuitry, but showed the feasibility of the approach [1], [2].

In parallel, we have proposed scalable architectures [7]–[9]

targeting deep learning workloads with increased power effi-

ciency forecasted. Nonetheless, the technology has remained

high risk, with challenges in coupling highly dynamical and

sensitive analog memory cells with yield and variability chal-

lenges with digital sensing/driving circuits.

Here we describe recent progress developing an integrated

platform combining nanoscale memristive devices with CMOS

driving and sensing circuits. The memristors exhibit a wide

dynamic range and high yield, with promising potential to

operate in a low power regime. The chip integration de-risks

many circuit design concerns and enables the demonstration of

several concepts proposed in our architectures, while reducing

the unfavorable parasitics of off-chip driving circuits.

II. NANO-SCALE MEMRISTORS WITH MULTI-BIT

CAPABILITY

The memristive devices are integrated with foundry CMOS

in a back-end-of-the-line (BEOL) process. The layers of the

memristor materials stack (Ta/TaOx/Pt) are deposited with

room temperature sputtering, without damage to underlying

CMOS elements. Electron-beam lithography was used to pat-

tern the electrodes for sub-100 nm features. Fig. 1 shows

a cross-sectional transmission electron microscope (TEM)

image and a top view scanning electron microscopy (SEM)

image of an integrated Ta/TaOx/Pt memristor (50 nm×50 nm

and 25 nm×25 nm) [10].

The integrated nanoscale memristive devices exhibit a

promising conductance range up to 10
6 with a high yield,

particularly for the smallest device sizes (See Fig. 2(a) and

Fig. 2(b)). After conductance programming, read stability

was gauged using a highly sensitive semiconductor parameter

analyzer, with the standard deviation (σG) and coefficient of

variation (σG/G) shown in Fig. 2(c) and Fig. 2(d). From the

data one finds that the σG is generally smaller than 1 µS, and

more importantly, the absolute σG is smaller when the device

is programmed to lower conductances. We have previously
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Fig. 1. (a) Cross-sectional TEM of an integrated Ta/TaOx/Pt memristor. (b)
Top view SEM of a cross-point memristor of dimensions 25 nm×25 nm

demonstrated that the device can be programmed to more than

256 states, or 8-bit, with ±2σ as a discrete state [10].
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Fig. 2. (a) The relationship between the programmed conductance and the
applied gate voltage during programming, showing a tunable conductance
range from 0.1 nS to 100 µS. (b) Smaller devices show higher yield in
operating at the wider conductance range. (c,d) The standard deviation and
the percent variation of the repeated conductance reads with respect to the
conductance state.

III. ANALOG CIRCUIT DESIGNS FOR INTEGRATED 180 NM

CMOS AND MEMRISTIVE DEVICES

Our new integrated chip platform includes both driving

and sensing analog circuits, which are designed and taped

out with TSMC’s 180 nm technology node. Each test chip

(called ”SuperT”) consists of three 64×64 memristive crossbar

arrays, along with digital control and analog sensing circuits

for performing in-memory analog computations. A die photo

is shown in Fig. 3(a). Fig. 3(b) shows a representative diagram

of a crossbar and its analog circuits. Each array utilizes digital

to analog converters (DACs) to drive analog voltages (inputs)

to the rows of the array, circuits to rapidly sense (< 1µs) the

output currents, and analog to digital converters (ADCs) to

provide final results.

After integrating the memristors with the silicon circuits, the

chips are wire-bonded in a package and inserted into a custom
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Fig. 3. (a) The floorplan of our integrated analog design and memristive
crossbar arrays. (b) A simplified circuit diagram showing just four rows and
columns for clarity, while the actual memristive crossbar arrays are 64×64.
(c) Testboard interfacing our chip with a micro-controller. The board provides
various DC analog references and debugging capabilities.

printed circuit board (PCB) control system, which provides a

digital interface to the test chip and supplies a number of DC

analog reference signals (see Fig. 3(c)).

Utilizing nanoscale memristors, we have shown higher re-

sistances [10] than previously reported in micrometer scale de-

vices [2], allowing for lower power operation. The memristor

arrays were successfully programmed to target conductances

below 200 µS as shown in Fig. 4(a). The integrated platform

significantly reduced circuit parasitics, enabling finer memris-

tor conductance programming in this higher resistance range.

Once programmed, different analog conductance levels in the

memristors are maintained for a prolonged period of time, with

Fig. 4(a) showing minimal conductance drift over 20 hours at
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Fig. 4. (a) The rention performance of all devices in a 64×64 array that
measured with the integrated peripheral circuit. Each datapoint is averaged
from 50 repeated reads. (b) Multilevel retention performance of our integrated
TaOx device. The data was generated from conductance reads with 0.2 V read
voltage from all devices in a 64×64 array for 10,000 times.

room temperature. Each datapoint is averaged from 50 reads

to improve individual read accuracy. The effective number of

bits supported by these analog nanoscale devices is determined

by the stability of the conductance states. We observe the

majority of the memristors have a standard deviation of 1 µS or

smaller (4(b)), consistent with individual device measurements

in Fig. 2, and supporting the multi-bit programmability. Over

90% of the devices can be formed/programmed with voltages

smaller than 2.4 V and pulse widths of 20 ns, although a

minority required higher voltages (the 180 nm transistors

supplies the voltages up to 5 V). These are encouraging results,

particularly in the favorable scaling of driving voltages and

lower conductances with reduced device size.

IV. APPLICATIONS

A. Convolutional neural networks

Standard deviation = 2.29%

95.3% accuracy

Convolutional array
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Fig. 5. (a, b) Two different 4k (64×64) memristor crossbars in a same chip
were programmed for the convolutional and fully-connected layer weights
with conductances of each device within 100 µS (i.e. larger than 10 kΩ
in resistance). (c) The analog computing error follows a normal distribution
with a standard deviation of about 2.29%; (d) The shift-and-add digitization
approach achieves highest 95.3% accuracy with the most power efficiency.

Integration of the nanoscale memristors and peripheral

driving/sensing circuits enables improved computing and pro-

gramming performance, demonstrated by building a multi-

layer convolutional neural network (CNN) to classify the

handwritten digits in the MNIST (Modified National Institute

of Standards and Technology) dataset. To allow for negative

NN weights, we use the conductance difference between two

memristors (a differential pair) to represent one weight value.

Therefore, 7 × (5×5) convolutional kernels plus 7 biases are

mapped to a 26 (=5×5+1) × 14 (=7×2) array, and a 112×10

fully connected layer plus 10 biases maps to a 113×10

memristor array. These are programmed in two crossbar arrays

within the same chip (see Fig. 5(a) and Fig. 5(b)).

This work represents the first direct experimental implemen-

tation of several concepts proposed in our ISAAC and PUMA

architectures [7], [8]: reproducing convolutional kernels for

higher parallelism and a novel shift-and-add technique for

streaming inputs that minimizes the analog-digital converter

(ADC) precision requirements, which otherwise bottlenecks

overall system performance. ISAAC and PUMA [7], [8]

forecast a 10-1,000x improvement over GPUs. 5(a) shows the

duplicated kernels for higher parallelism, with input vectors

first normalized between 0 and 1 (image input and intermediate

layer input after ReLu are both non-negative). The massively

parallel multiplications are performed by applying voltages to

the rows, sensing the current differences from the columns.

The results are fed to the next crossbar array bit-by-bit

using a fixed input amplitude, while bit-shifting and adding

the resulting output stream [7]. This novel technique saves

overhead in chip area and energy consumption compared to

using analog inputs, and enables the use of devices with very

low conductance, further saving power.

Densely connected NN layers are costly in GPU and other

digital architectures, but naturally supported here. We mea-

sured our analog multiplication errors (difference between

experimental outputs and expected ideal outputs, divided by

the output) to be around 2.29% (Fig. 5(c)). Using the 8-bit

shift-and-add input encoding approach, we easily achieved a

95.33% experimental classification accuracy from our chip

through all 10,000 samples of the MNIST test-set (Fig. 5(d)).

The software baseline is 98.15%. While current work is

promising, we expect higher NN accuracy may be achieved

with finer programming of the memristor conductances.

B. Accelerator for optimization problems

Optimization problems, where a cost function (or Energy)

is minimized across a high-dimensional set of variables, are

of great importance with applications including improving

airline scheduling, resource allocation, and wiring in VLSI.

Such problems are extremely time-consuming to solve exactly,

but can be tackled with heuristic and approximate methods

more rapidly. Ising machines and Hopfield Neural Networks

(HNN) implement the latter, where candidate solutions are

iteratively improved based on local gradient calculations and

stochastic exploration of the cost function landscape. In the

physical implementation of such algorithms, the most power-

intensive tasks are vector-matrix multiplications and the injec-

tion of controlled noise. These can both be implemented using
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Fig. 6. (a) A crossbar-based system for implementing a Hopfield network, a
type of recurrent neural network. (b) Illustration of a simple Max-Cut graph
problem. (c) Experimental data for a 60× 60 Max-Cut problem solved with
our memristor crossbar chip. With the proper control of analog noise, the
globally optimal solution can be reached with high probability. Transparent
lines show the simulation data while solid lines are experiment data.

crossbars of memristors computing in the analog rather than

digital domain, as illustrated in Fig. 6(a).

Target optimization problems are programmed into the

memristor array values, representing the set of objectives

and/or constraints. The output of the array is sampled and

thresholded, with the result directly fed to I/O buffers to update

the binary status of the neurons, which are used as inputs

for the next cycle (more details in [6]). An example problem

is shown in Fig. 6(b) for what is known as the ”Max-Cut”

optimization problem. Given a graph with nodes and edges,

the objective is to determine a partitioning into two sets of

nodes such that the edges between them is maximized. This is

an NP-hard optimization problem without any known efficient

algorithm. Fig. 6(c) shows experimental data solving a 60×60

Max-Cut problem in our analog memristor crossbar chip. Each

cycle represents an update of all nodes, and a temporal noise

profile is added to inject advantageous randomness early on,

while tuning this down to zero in the final calculations (similar

to the simulated annealing algorithm). We have forecasted

that such a memristor-based optimization solver has over four

orders of magnitude higher solution throughput per power

compared to fully digital approaches and present-day quantum

and optical accelerators [6].

V. RELATED WORK

The compelling advantages of analog in-memory based

computing over conventional computing have attracted many

related approaches to that described here. Ambrogio et al. [11]

explored the use of phase change memory, a more mature non-

volatile technology. One challenge addressed in this work was

the resistance state drift of such devices, and the additional

circuit elements needed to mitigate these effects. Cai et al.

[6] recently reported a chip with on-chip integrated peripheral

circuits, while using passive WOx memristive crossbars which

limited demonstrations to small portions of an array. Chen et

al. [4] built a functional integrated chip successfully demon-

strating experimentally MNIST classification. While using

foundry ReRAM, the work was limited to binary states, reduc-

ing some of the performance potential. Yao et al. [3] has also

shown integrated chips for convolutional neural networks, with

128×16 sub-micron (0.5 µm) memristive crossbars on each

chip. The present work showcased fully analog computations

across multiple cascaded memristive crossbar arrays, with on-

chip integrated peripherals with sub-100 nm (25 nm) devices,

supporting a wide range of applications and demonstrations.
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